On the Weak Leopoldt Conjecture and Coranks of Selmer Groups of Supersingular Abelian Varieties in $p$-adic Lie Extensions
نویسندگان
چکیده
Let $A$ be an abelian variety defined over a number field $F$ with supersingular reduction at all primes of above $p$. We establish equivalence between the weak Leopoldt conjecture and expected value corank classical Selmer group $p$-adic Lie extension (not neccesasily containing cyclotomic $\Zp$-extension). As application, we obtain exactness defining sequence group. In event that is one-dimensional, show dual has no nontrivial finite submodules. Finally, aforementioned conclusions carry to non-ordinary cuspidal modular form.
منابع مشابه
On the Structure of Selmer Groups of Λ-Adic Deformations over p-Adic Lie Extensions
In this paper, we consider the Λ-adic deformations of Galois representations associated to elliptic curves. We prove that the Pontryagin dual of the Selmer group of a Λ-adic deformation over certain p-adic Lie extensions of a number field, that are not necessarily commutative, has no non-zero pseudo-null submodule. We also study the structure of various arithmetic Iwasawa modules associated to ...
متن کاملSelmer Groups of Abelian Varieties in Extensions of Function Fields
Let k be a field of characteristic q, C a smooth connected curve defined over k with function field K := k(C). Let A/K be a non constant abelian variety defined over K of dimension d. We assume that q = 0 or > 2d + 1. Let p 6= q be a prime number and C → C a finite geometrically Galois and étale cover defined over k with function field K ′ := k(C). Let (τ , B) be the K /k-trace of A/K. We give ...
متن کاملGriffiths Groups of Supersingular Abelian Varieties
The Griffiths group Grr(X) of a smooth projective variety X over an algebraically closed field is defined to be the group of homologically trivial algebraic cycles of codimension r on X modulo the subgroup of algebraically trivial algebraic cycles. The main result of this paper is that the Griffiths group Gr(Ak̄) of a supersingular abelian variety Ak̄ over the algebraic closure of a finite field ...
متن کاملA p-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties
Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the padic L-function of a modular abelian variety and showing it satisfies the appropriate interpolation property. We descri...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 2021
ISSN: ['0387-3870']
DOI: https://doi.org/10.3836/tjm/1502179341